

5 MHz Single-Supply Operational Amplifier

OP183

FEATURES

Single supply: 3 V to 36 V Wide bandwidth: 5 MHz Low offset voltage: 1 mV High slew rate: 10 V/µs Low noise: 10 nV/√Hz Unity gain stable Input and output range includes GND No phase reversal

APPLICATIONS

Multimedia Telecom ADC buffers Wide band filters Microphone preamplifiers

GENERAL DESCRIPTION

The OP183 is a single-supply, 5 MHz bandwidth amplifier with slew rates of 10 V/ μ s. It can operate from voltages as low as 3 V and up to 36 V. This combination of slew rate and bandwidth yields excellent single-supply ac performance, making this amplifier ideally suited for telecom and multimedia audio applications.

The OP183 also provides good dc performance with guaranteed 1 mV offset. Noise is a respectable 10 nV/ \sqrt{Hz} . Supply current is only 1.2 mA per amplifier.

This amplifier is well suited for single-supply applications that require moderate bandwidth even when used in high gain configurations. This makes it useful in filters and instrumentation. The output drive capability and very wide full-power bandwidth of the OP183 make it a good choice for multimedia headphone drivers or microphone input amplifiers.

The OP183 is available in a SO-8 surface-mount package. It is specified over the extended industrial (-40°C to +85°C) temperature range.

PIN CONNECTION

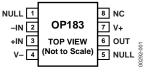


Figure 1. 8-Lead Narrow Body SOIC (S Suffix)

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS @ Vs = 5 V

 $T_A = 25^{\circ}$ C, unless otherwise noted.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{CM} = 2.5 V$, $V_{OUT} = 2.5 V$,		0.025	1.0	mV
		$-40^{\circ}C \le T_{A} \le +85^{\circ}C$			1.25	mV
Input Bias Current	IB	$V_{CM} = 2.5 V$, $V_{OUT} = 2.5 V$,		350	600	nA
		$-40^\circ C \le T_A \le +85^\circ C$		430	750	nA
Input Offset Current	los	$V_{CM} = 2.5 V$, $V_{OUT} = 2.5 V$,				nA
		$-40^{\circ}C \leq T_{A} \leq +85^{\circ}C$		11	±50	nA
Input Voltage Range			0		3.5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0$ to 3.5 V				
		$-40^{\circ}C \le T_A \le +85^{\circ}C$	70	104		dB
Large Signal Voltage Gain	Avo	$R_L=2\;k\Omega,0.2\leq V_O\leq 3.8\;V$	100			V/mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$			4		μV/°C
Bias Current Drift	ΔΙ _Β /ΔΤ			-1.6		nA/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	Vон	$R_L = 2 \ k\Omega$ to GND	4.0	4.22		V
Output Voltage Low	V _{OL}	$R_L = 2 \ k\Omega$ to GND		50	75	mV
Short-Circuit Limit	lsc	Source		25		mA
		Sink		30		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_s = 4 V$ to 6 V,				
		$-40^{\circ}C \le T_A \le +85^{\circ}C$	70	104		dB
Supply Current/Amplifier	I _{SY}	$V_0 = 2.5 V_{,}$				
		$-40^{\circ}C \le T_{A} \le +85^{\circ}C$		1.2	1.5	mA
Supply Voltage Range	Vs		3		±18	v
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$	5	10		V/µs
Full Power Bandwidth	BWp	1% Distortion	-	>50		kHz
Settling Time	ts	To 0.01%		1.5		μs
Gain Bandwidth Product	GBP			5		MHz
Phase Margin	фm			5 46		Degrees
	ψΠ			40		Degrees
NOISE PERFORMANCE						
Voltage Noise	e _n p-p	0.1 Hz to 10 Hz		2		μV p-p
Voltage Noise Density	en	$f = 1 \text{ kHz}, V_{CM} = 2.5 \text{ V}$		10		nV/√Hz
Current Noise Density	İn			0.4		pA/√Hz

ELECTRICAL CHARACTERISTICS @ Vs = 3 V

 $T_A = 25^{\circ}$ C, unless otherwise noted.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{CM} = 1.5 V$, $V_{OUT} = 1.5 V$,		0.3	1.0	mV
		$-40^{\circ}C \le T_A \le +85^{\circ}C$			1.25	mV
Input Bias Current	IB	$V_{CM} = 1.5 V$, $V_{OUT} = 1.5 V$,		350	600	nA
		$-40^\circ C \le T_A \le +85^\circ C$			750	nA
Input Offset Current	los	$V_{CM} = 1.5 V, V_{OUT} = 1.5 V,$				nA
		$-40^{\circ}C \le T_A \le +85^{\circ}C$		11	±50	nA
Input Voltage Range			0		1.5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 V \text{ to } 1.5 V,$				
		$-40^{\circ}C \leq T_{A} \leq +85^{\circ}C$	70	103		dB
Large Signal Voltage Gain	A _{VO}	$R_L = 2 \ k\Omega, \ 0.2 \leq V_O \leq 1.8 \ V$	100	260		V/mV
OUTPUT CHARACTERISTICS						
Output Voltage High	Vон	$R_L = 2 k\Omega$ to GND	2.0	2.25		V
Output Voltage Low	Vol	$R_L = 2 \ k\Omega$ to GND		90	125	mV
Short-Circuit Limit	Isc	Source		25		mA
		Sink		30		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{s} = 2.5 V \text{ to } 3.5 V$,				
		$-40^\circ C \leq T_A \leq +85^\circ C$	60	113		dB
Supply Current/Amplifier	I _{SY}	$-40^\circ C \leq T_A \leq +85^\circ C, V_O = 1.5 \; V$		1.2	1.5	mA
DYNAMIC PERFORMANCE						
Gain Bandwidth Product	GBP			5		MHz
NOISE PERFORMANCE						
Voltage Noise Density	en	f = 1 kHz, V _{CM} = 1.5 V		10		nV/√H

ELECTRICAL CHARACTERISTICS @ Vs = ± 15 V

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 3.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			0.01	1.0	mV
		$-40^\circ C \le T_A \le +85^\circ C$			1.25	mV
Input Bias Current	IB			300	600	nA
		$-40^{\circ}C \le T_A \le +85^{\circ}C$		400	750	nA
Input Offset Current	los	$-40 \le T_A \le +85^{\circ}C$		11	±50	nA
Input Voltage Range			-15		+13.5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -15 V \text{ to } +13.5 V,$				
		$-40^{\circ}C \le TA \le +85^{\circ}C$	70	86		dB
Large Signal Voltage Gain	A _{vo}	$R_L = 2 \ k\Omega$	100	1000		V/mV
Offset Voltage Drift	$\Delta V_{os}/\Delta T$			3		μV/°C
Bias Current Drift	$\Delta I_{B}/\Delta T$	AL . 1		-1.6		nA/°C
Long-Term Offset Voltage	Vos	Note ¹			1.5	mV
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L=2~k\Omega$ to GND, $-40^\circ C \leq T_A \leq +85^\circ C$	13.9	14.1		V
Output Voltage Low	V _{OL}	$R_L=2~k\Omega$ to GND, $-40^\circ C \leq T_A \leq +85^\circ C$		-14.05	-13.9	V
Short-Circuit Limit	Isc	Source		30		mA
		Sink		50		mA
Open-Loop Output Impedance	Zout	$f = 1 MHz, A_V = +1$		15		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{s} = \pm 2.5 V \text{ to } \pm 18 V$,				
		$-40^{\circ}C \le T_A \le +85^{\circ}C$	70	112		dB
Supply Current/Amplifier	lsy	$V_{s} = \pm 18 V, V_{O} = 0 V,$				
		$-40^{\circ}C \le T_A \le +85^{\circ}C$		1.2	1.75	mA
Supply Voltage Range	Vs		3		±18	V
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_l = 2 k\Omega$	10	15		V/µs
Full Power Bandwidth	BWp	1% Distortion		50		kHz
Settling Time	ts	To 0.01%		1.5		μs
Gain Bandwidth Product	GBP			5		MHz
Phase Margin	φm			56		Degrees
NOISE PERFORMANCE						
Voltage Noise	en p-p	0.1 Hz to 10 Hz		2		μV p-р
Voltage Noise Density	en	f = 1 kHz		10		nV/√Hz
Current Noise Density	in in			0.4		pA/√Hz

¹ Long-term offset voltage is guaranteed by a 1,000 hour life test performed on three independent lots at 125°C, with an LTPD of 1.3.

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating		
Supply Voltage	±18 V		
Input Voltage	±18 V		
Differential Input Voltage ¹	±7 V		
Output Short-Circuit Duration to GND	Indefinite		
Storage Temperature Range			
S Package	–65°C to +150°C		
Operating Temperature Range			
OP183	–40°C to +85°C		
Junction Temperature Range			
S Package	–65°C to +150°C		
Lead Temperature Range (Soldering 60 sec)	300°C		

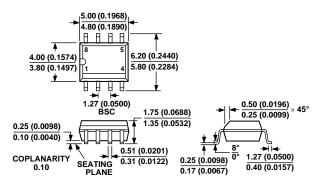
 1 For supply voltages less than ± 7 V, the absolute maximum input voltage is equal to the supply voltage. Maximum input current should not exceed 2 mA.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Absolute maximum ratings apply to packaged parts, unless otherwise noted.

Table 5.

Package Type	θ_{JA}^{1}	ον	Units
8-Lead SOIC (S)	158	43	°C/W


 1 θ_{JA} is specified for worst-case conditions; in other words, θ_{JA} is specified for device soldered in circuit board for SOIC packages.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Figure 41. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) S-Suffix Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
OP183GS	–40°C to +85°C	8-Lead SOIC_N	S-Suffix (R-8)
OP183GS-REEL	-40°C to +85°C	8-Lead SOIC_N	S-Suffix (R-8)
OP183GS-REEL7	-40°C to +85°C	8-Lead SOIC_N	S-Suffix (R-8)
OP183GSZ ¹	-40°C to +85°C	8-Lead SOIC_N	S-Suffix (R-8)
OP183GSZ-REEL ¹	-40°C to +85°C	8-Lead SOIC_N	S-Suffix (R-8)
OP183GSZ-REEL71	–40°C to +85°C	8-Lead SOIC_N	S-Suffix (R-8)

 $^{1}Z = Pb$ free part.

Rev. D | Page 16 of 16